A Hybrid Network Architecture for Applications of Adaptive Neuro Fuzzy Inference System
نویسنده
چکیده
In this paper we presented an architecture and basic learning process underlying in fuzzy inference system and adaptive neuro fuzzy inference system which is a hybrid network implemented in framework of adaptive network. In real world computing environment, soft computing techniques including neural network, fuzzy logic algorithms have been widely used to derive an actual decision using given input or output data attributes, ANFIS can construct mapping based on both human knowledge and hybrid learning algorithms. This study involves study of ANFIS strategy ANFIS strategy is employed to model nonlinear functions, to control one of the most important parameters of the induction machine and predict a chaotic time series, all yielding more effective, faster response or settling times. Also in this paper, we presented the architecture and basic learning process underlying ANFIS (adaptive-network-based fuzzy inference system) which is a fuzzy inference system implemented in the framework of adaptive networks. Soft computing approaches including artificial neural networks and fuzzy inference have been used widely to model expert behavior. Using given input/output data values, the proposed ANFIS can construct mapping based on both human knowledge (in the form of fuzzy if-then rules) and hybrid learning algorithm. In modeling and simulation, the ANFIS strategy is employed to model nonlinear functions, to control one of the most important parameters of the induction machine and predict a chaotic time series, all yielding more effective, faster response or settling times. Keywords— ANFIS, Fuzzy logic, neural network, decision support system, learning algorithm
منابع مشابه
Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملEstimating the Optimal Dosage of Sodium Valproate in Idiopathic Generalized Epilepsy with Adaptive Neuro-Fuzzy Inference System
Introduction: Epilepsy is a clinical syndrome in which seizures have a tendency to recur. Sodium valproate is the most effective drug in the treatment of all types of generalized seizures. Finding the optimal dosage (the lowest effective dose) of sodium valproate is a real challenge to all neurologists. In this study, a new approach based on Adaptive Neuro-Fuzzy Inference System (ANFIS) was pre...
متن کامل